

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 

#### Data Management



# **ORACLE use within the LCG**

Eva Dafonte Pérez 15 February 08





### Outline



- CERN and LHC
- Role of databases in LHC data management
- Oracle database technologies and deployment models
- Oracle Streams replication
- Monitoring
- Future improvements
- Summary



# The LHC Computing Challenge

- Data volume
  - high rate x large number of channels x 4 experiments
  - 15 PetaBytes of new data each year stored
  - much more data discarded during multi-level filtering before storage
- Compute power
  - event complexity x Nb. events x thousands users
  - 100 k of today's fastest CPUs
- Worldwide analysis & funding
  - computing funding locally in major regions & countries
  - efficient analysis everywhere
  - GRID technology



CERN

Department



- x thousands - 100 k of to CPUs
- CERN IT Department

CH-1211 Genève 23 Switzerland www.cern.ch/it



# WLCG Collaboration

- The Collaboration
  - 4 LHC experiments
  - ~200 computing centres
  - 12 large centers (Tier-0, Tier-1)
  - 38 federations of smaller "Tier-2" centres
  - growing to ~40 countries
  - Grids: EGEE, OSG, Nordugrid
- Technical Design Reports
  - WLCG, 4 Experiments: June 2005
- Memorandum of Understanding
  - agreed in October 2005
- Resources
  - 5-year forward look



CERN

Department

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

# High Energy Physics - User Community Department

- Very many application developers
  - with varying levels of DB training
- A large number of different applications
  - detector geometry, conditions, calibration, configuration, production workflow, analysis data
  - Grid services: file catalogs, transfer workflow

#### • Very different operational environments

- online systems:
  - HA required, controlled environment
- data production:
  - coordinated batch access by production managers, grid computing
- data analysis:
  - chaotic access by a large number of users



Oracle use within the LCG -

CERN IT Department CH-1211 Genève 23 Switzerland WWW.cern.ch/it



Oracle Real Application Clusters 10g - Foundation for Grid Computing http://www.oracle.com/technology/products/database/clustering/index.html

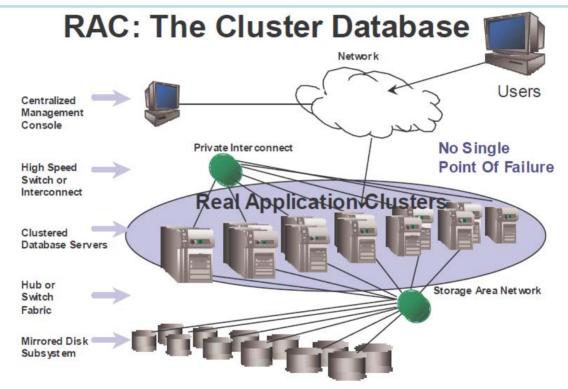


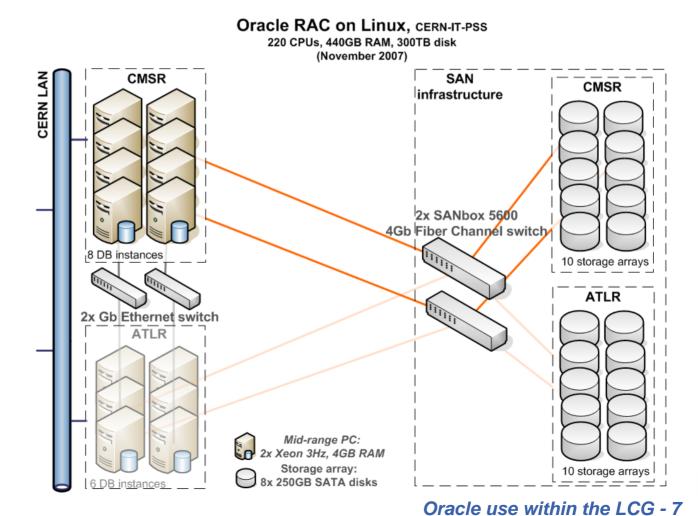

Figure 1: Oracle RAC –clustering database servers – foundation for Enterprise Grid Computing delivering high availability, scalability and flexibility.



Oracle use within the LCG - 6

CERN

Department


CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

on a M

now loon

# Tier0 Database Architecture for Physics Department

- Applications consolidated on large clusters, per experiment
- Redundant and homogeneous HW across each RAC



FRN

// now loop wait
vale(bust TPod
seep(1) // %
for(unsignedi
if(busy TPools
/// it's title no
busy TPools
else
inter
}

on a SIGIP

while (( ni

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it



#### CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

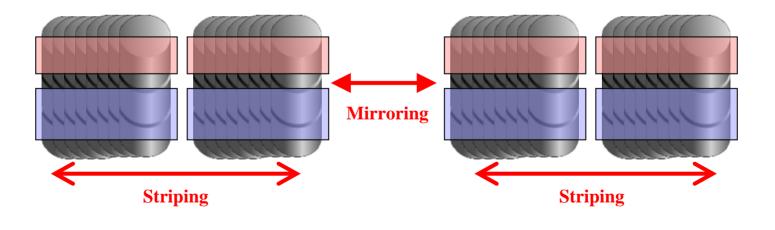
#### Architecture

CERN**IT** Department








## Architecture (storage)



CERI

- Following SAME concept:
  - Oracle ASM for mirroring across arrays and striping
- Two diskgroups per database ('data', 'recovery')
- Destroking: most accessed data on external part of disk
- Example:

DiskGrp1 DiskGrp2







### Architecture (services)



CER

- Resources distributed among Oracle services
  - Applications assigned to dedicated service
  - Applications components might have different services
- Service reallocation not always completely transparent

| CMS_COND         | Preferred | A1        | A2        | A3        | A4        | A5        | A6        | A7        |
|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CMS_C2K          | Preferred | A2        | A3        | A4        | A5        | A6        | A7        | A1        |
| CMS_DBS          | A5        | A3        | A1        | A2        | Preferred | Preferred | Preferred | A4        |
| CMS_DBS_W        | A4        | A5        | A6        | A7        | Preferred | A1        | A2        | A3        |
| CMS_SSTRACKER    | Preferred |
| CMS_TRANSFERMGMT | A2        | Preferred | Preferred | Preferred | A1        | A3        | A4        | A5        |
|                  |           |           |           |           |           |           |           |           |
| CMS RAC Node #   | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         |
|                  |           |           |           |           |           |           |           |           |
| CMS_COND         | Preferred | A1        | A2        | A3        |           | A4        | A5        | A6        |
| CMS_C2K          | Preferred | A2        | A3        | A4        |           | A5        | A6        | A1        |
| CMS_DBS          | A4        | A2        | Preferred | A1        |           | Preferred | Preferred | A3        |
| CMS_DBS_W        | A3        | A4        | A5        | A6        |           | Preferred | A1        | A2        |
| CMS_SSTRACKER    | Preferred | Preferred | Preferred | Preferred |           | Preferred | Preferred | Preferred |
| CMS_TRANSFERMGMT | A1        | Preferred | Preferred | Preferred |           | A2        | A3        | A4        |
|                  |           |           |           |           |           |           |           |           |

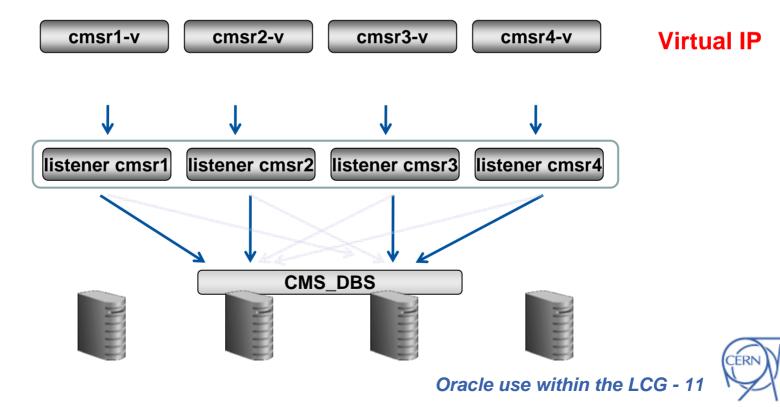
CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 





CH-1211 Genève 23

www.cern.ch/it


Switzerland

### Architecture (load balancing)

- Service's connection string mentions ALL virtual IPs
- It connects to a random virtual IP (client load balance)
- Listener sends connection to least loaded node where service runs (server load balance)

CERN

Department



#### \$ sqlplus cms\_dbs@cms\_dbs



CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

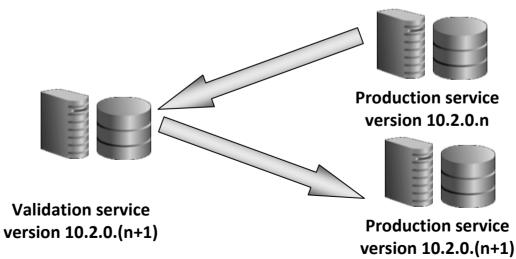
### Architecture (load balancing)

- Used also for rolling upgrades (patch applied node by node)
- Small glitches might happen during VIP move
  - no response / timeout / error
  - applications need to be ready for this  $\rightarrow$  catch errors, retry, not hang

CERN

Department

#### cmsr1-v cmsr3-v cmsr4-v Virtual IP cmsr2-v listener cmsr1 listener cmsr4 listener cmsr3 CMS DBS Oracle use within the LCG - 12


#### \$ sqlplus cms\_dbs@cms\_dbs



• Applications' release cycle



• Database software release cycle





CERN IT Department CH-1211 Genève 23 Switzerland WWW.cern.ch/it

on a SH

### Backup strategy used at Tier0

- Both Oracle-recommended strategies implemented for all production systems using RMAN
- Incremental backup strategy:
  - backups go to tapes
  - weekly or biweekly level 0 backups (depending on the DB size)
  - level 1 cumulative backup inbetween
  - daily incremental level 1 differential backups
  - archivelog backup every 30 minutes
- Incrementally updated DB copy strategy:
  - daily incremental differential backups applied with 2 days of delay
  - copies, incremental backups and archived redo logs stored in the Flash Recovery Area
- Central machine to schedule and run all the backups
- Central RMAN catalog exported on regular basis



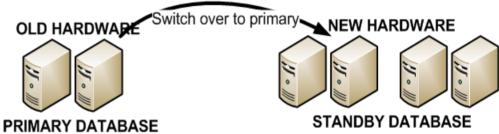
Oracle use within the LCG - 14

CER

Department

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it




CH-1211 Genève 23

www.cern.ch/it

Switzerland

#### Oracle DataGuard for RAC migration

- Commodity hardware has small warranty periods
- Hardware specifications progress very fast
- Minimal downtime required independent of database size
  - Easy to fallback in case of error
- Can include
  - version change
  - migration to 64bit
  - hardware upgrades
- Our use cases: migrate hardware (storage + servers) and
  - upgrade 10.2.0.2 to 10.2.0.3
  - upgrade 32bit to 64bit OS+RDBMS



CER

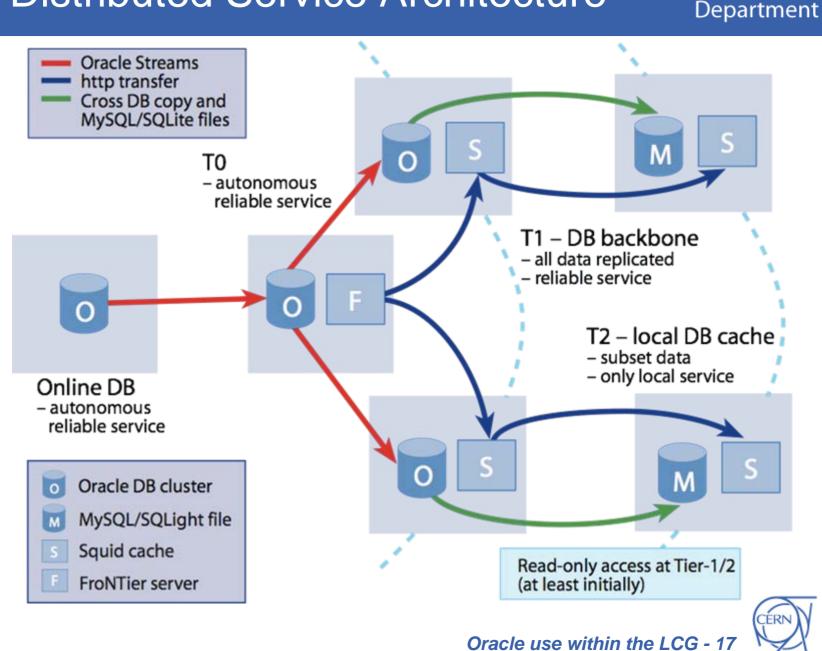
Department





Switzerland

www.cern.ch/it


### Physics databases numbers

- ~20 RACs
  - 6-8 nodes
  - $-\,$  ALICE 1TB, ATLAS and CMS 4TB, LHCb and WLCG 3TB
- 220 CPUs, 440GB RAM, 300TB disk
  - soon quad-cores (3-4 node RAC)
- 345 production schemas (feb07)
- 9.625 GB production data
  - largest table: 3.02 billion rows (IOT, non partitioned)
- Workload
  - 5.2 million sessions/week (week 3/2008)
  - 128 MB/s (average for week 3/2008)
  - 995 CPU hours/week (CPU time avg for week 3/2008)



Department

## **Distributed Service Architecture**



CERN]

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

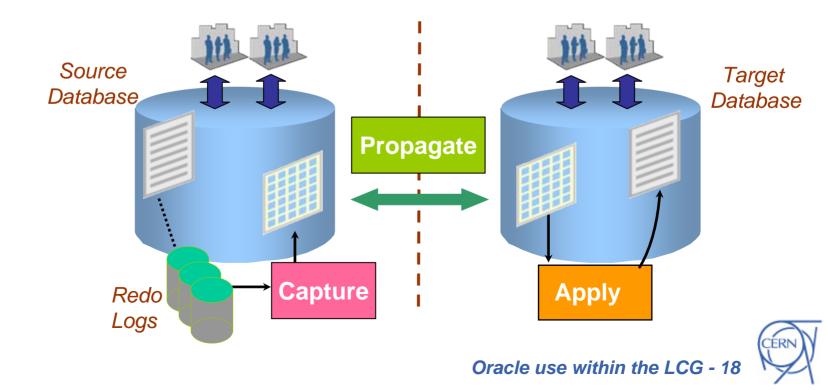
while (( nit

cofurn:

// on a SIGIN

now loop wa

if(busyTPool


intle n

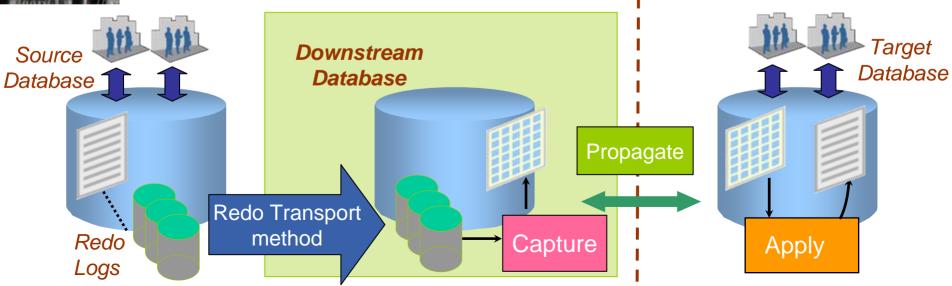
# **Oracle Streams replication**

- Technology for sharing information between databases
- Database changes captured from the redo-log and propagated asynchronously as Logical Change Records (LCRs)

CERN

Department




CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

# Downstream capture & Network optimizations

now loop wa



- Downstream capture to de-couple Tier 0 production databases from destination or network problems
  - source database availability is highest priority
- Optimizing redo log retention on downstream database to allow for sufficient re-synchronisation window
  - we use 5 days retention to avoid tape access
- TCP and Oracle protocol optimisations yielded significant throughput improvements (factor 10)
  - network latency to some sites 300 ms(!)





### Streams lessons learned



- Filtering capture vs. propagation rules
  - performance difference significant
  - obtained a factor 5 in apply speed
- Be aware of row-id based operations
  - apply side can be significantly less efficient
- SQL bulk operations (at the source db)
  - may map to many elementary operations at the destination side
  - need to control source rates to avoid overloading
- Streams fail-over in case of site problems
  - naïve set-up can run into problems with spilling
  - proposed set-up with dedicated "problem" stream proven to work during site/network problems



CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

# Streams enhancements in 11g



Department

CERN

- Performance improvements
  - minimizes disk I/O and reduce capture latency
  - reduces CPU consumption
- **Combined Capture and Apply** 
  - direct communication between capture and apply processes
  - observed significant gain in replication throughput for several applications
    - e.g. 12,000 lcr/s (11g) instead of 5,000 lcr/s (10g)
  - this will help us to
    - increase the replicated data volume for 1-to-1 replication setups

- decrease the time for tier sites to catch-up after outages/interventions
- Data comparison, performance advisor, automatic split and merge procedures, ....



- CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it



Switzerland

www.cern.ch/it

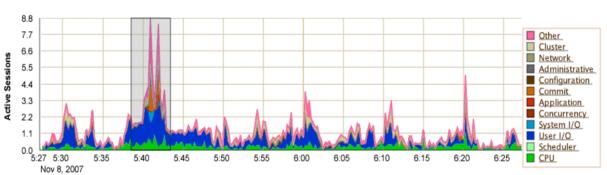
### Monitoring



#### • 24x7 reactive monitoring

- Lemon Alarms, Operators, SysAdmins
  - HW failures, OS problems, High load
- Host and, instance and service availability
  - home grown monitoring

#### Active monitoring


- Oracle Enterprise Manager
  - execution plans, resource usage per service
- 3D monitoring included into experiments dashboards
- Lemon
- Weekly reports (sent to experiment DBAs/links/3D)
  - SQL changes, service usage, bad connection management, bad indexes





#### Top Activity

Switch Database Instance atlr.cern.ch\_atlr1 - Go



#### Drag the shaded box to change the time period for the detail section below.

Detail for Selected 5 Minute Interval Start Time Nov 8, 2007 5:38:34 PM MET

| Schedule SQL Tuning Advisor   | Create SQL Tuni         | ng Set   |
|-------------------------------|-------------------------|----------|
| elect All Select None         |                         |          |
| elect Activity (%) ∇          | SQL ID                  | SQL Type |
| <b>4</b> 2.                   | 78 <u>3t4zyft1ycmp7</u> | SELECT   |
| 11.30                         | aq8utg96sc8kq           | SELECT   |
| 8.30                          | 0pcmq7hryn2x0           | SELECT   |
| 5.87                          | aahvgmuar9z07           | SELECT   |
| 4.15                          | 7yhvgrsw7x8d7           | SELECT   |
| 2.72                          | 7grmrsp8dy3yd           | SELECT   |
| 1.72                          | 2f3ddpjygkxhv           | SELECT   |
| 1.72                          | 9scc29h43m5ap           | INSERT   |
| 1.29                          | 7hzn20h90y9rk           | SELECT   |
| 1.00                          | 6khrc3pvyw9j6           | SELECT   |
| (Schedule SQL Tuning Advisor) | (Create SQL Tuni        | ng Set ) |

| View Top Sessions |                  |                          |                                                     |
|-------------------|------------------|--------------------------|-----------------------------------------------------|
| Activity (%) ∇    | Session          | ID User Name             | Program                                             |
|                   | 29.72 <u>635</u> | ATLAS_PVSS_READER        | root.exe@roata01 (TNS V1-V3)                        |
| 5.77              | <u>579</u>       | ATLAS_PS_W3              | httpd@ccwbsn01.in2p3.fr (TNS V1-V3                  |
| 4.77              | <u>675</u>       | ATLAS_DASHBOARD_DM_WRITE | R data.stats.collection@lxarda11.cern.o<br>(TNS V1- |
| 4.08              | <u>673</u>       | ATLAS_PS_W3              |                                                     |
| 3.48              | <u>661</u>       | ATLAS_PS_W1              | python@atlas002.uta.edu (TNS V1-V                   |
| 3.38              | <u>874</u>       | <u>SYS</u>               | oracle@itrac21.cern.ch (LGWR)                       |
| 3.28              | <u>545</u>       | ATLAS_DQ2_R              | httpd.worker@lxb7239.cern.ch (TNS<br>V3)            |
| 3.28              | <u>859</u>       | <u>SYS</u>               | oracle@itrac21.cern.ch (ARC0)                       |
| 3.18              | <u>858</u>       | <u>SYS</u>               | oracle@itrac21.cern.ch (ARC1)                       |
| 2.78              | <u>636</u>       | ATLAS_DQ2_W              | httpd.worker@lxb7238.cern.ch (TNS<br>V3)            |

Total Sample Count: 1,006



CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

on a SI

now loon wa

06

coturn:

if(busy

else

Oracle use within the LCG - 23



CERN**IT** Department



## **RACMon - monitoring**

CERN**T** Department

#### Overview ASM Prod Services All Services Unavailability Performance Backup CDB State StreamMon

atir 🖩 atonr 🖻 cmsonr 🗟 cmsr 🗟 compr 🗟 d3r 🖺 int11r 🗟 int12r 🗟 int2r 🗟 int2r 🗟 int6r 🗟 int6r 🗟 int9r 🗟 int1 🗟 lcgr 🗟 lhcbr 🗟 pdbr 🗟 t11g64 🗟 test1

#### Last update: 2008-02-13 11:33 (4 minutes ago)

#### Cluster: atlr - RAC for ATLAS (monitoring enabled) last update: 2008-02-13 11:33

|                          | DB instances | Production services | ASM       | CDB       | Backup    |
|--------------------------|--------------|---------------------|-----------|-----------|-----------|
| Availability last 7 days | <u>100%</u>  | <u>100%</u>         | 100%      |           |           |
| Status                   | <u>0K</u>    | <u>OK</u>           | <u>ок</u> | <u>0K</u> | <u>0K</u> |

6 Nodes: <u>atlr1 (itrac21) √, atlr2 (itrac22) √, atlr3 (itrac23) √, atlr4 (itrac24) √, atlr5 (itrac25) √, atlr6 (itrac26) √ 10 Storages:</u> itstor30, itstor31, itstor32, itstor33, itstor34, itstor36, itstor36, itstor37, itstor38, itstor39 Sessions (per node): atlr1 (36), atlr2 (43), atlr3 (102), atlr4 (108), atlr5 (123), atlr6 (12)

#### Cluster: atonr - RAC for Atlas Online (monitoring enabled) last update: 2008-02-13 11:33

|                          | DB instances | Production services | ASM       | CDB       | Backup    |
|--------------------------|--------------|---------------------|-----------|-----------|-----------|
| Availability last 7 days | <u>100%</u>  | <u>100%</u>         | 100%      |           |           |
| Status                   | OK           | <u>OK</u>           | <u>OK</u> | <u>OK</u> | <u>ok</u> |

6 Nodes: atonr1 (itrac45)  $\checkmark$ , atonr2 (itrac46)  $\checkmark$ , atonr3 (itrac47)  $\checkmark$ , atonr4 (itrac48)  $\checkmark$ , atonr5 (itrac49)  $\checkmark$ , atonr6 (itrac50)  $\checkmark$ 10 Storages: itstor42, itstor43, itstor44, itstor45, itstor54, itstor55, itstor56, itstor57, itstor58, itstor59 Sessions (per node): atonr1 (42), atonr2 (58), atonr3 (47), atonr4 (63), atonr5 (50), atonr6 (4)

#### Cluster: cmsonr - RAC for CMS Online (monitoring disabled) last update: 2008-02-13 11:33

|                          | DB instances | ASM    | CDB | Backup |
|--------------------------|--------------|--------|-----|--------|
| Availability last 7 days | 98.88%       | 99.08% |     |        |
| Status                   | BAD          | BAD    | BAD | BAD    |

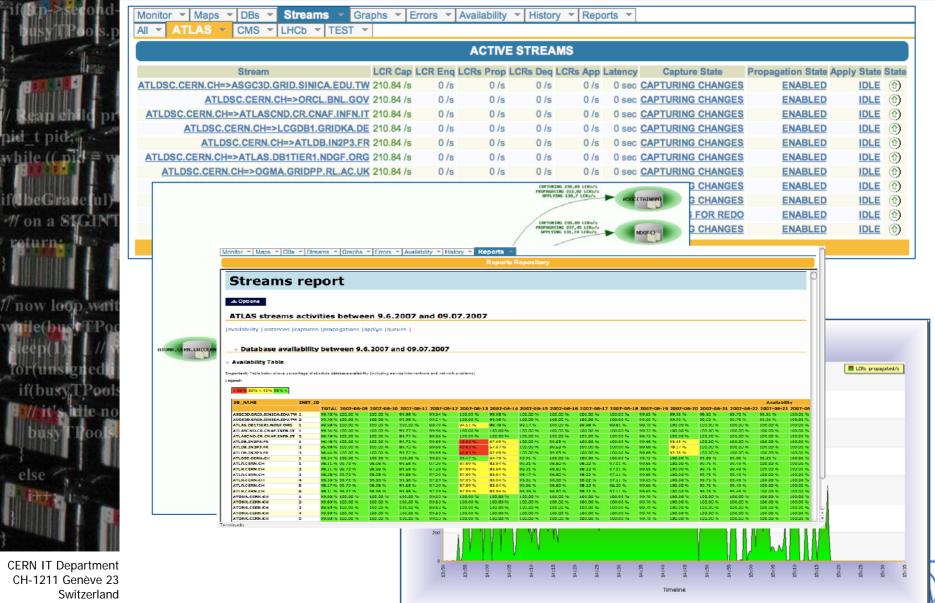
6 Nodes: <u>cmsonr1 (cms-srv-c2c01-11)</u>, <u>cmsonr2 (cms-srv-c2c01-12)</u>, <u>cmsonr3 (cms-srv-c2c01-13)</u>, <u>cmsonr4 (cms-srv-c2c01-14)</u>, <u>cmsonr5 (cms-srv-c2c01-15)</u>, <u>cmsonr6 (cms-srv-c2c01-16)</u>)

#### Cluster: cmsr - RAC for CMS (monitoring enabled) last update: 2008-02-13 11:33

|                          | DB instances | Production services | ASM       | CDB       | Backup    |
|--------------------------|--------------|---------------------|-----------|-----------|-----------|
| Availability last 7 days | <u>100%</u>  | <u>100%</u>         | 100%      |           |           |
| Status                   | <u>ok</u>    | <u>OK</u>           | <u>OK</u> | <u>OK</u> | <u>0K</u> |

8 Nodes: cmsr1 (itrac301) 🗸, cmsr2 (itrac302) 🗸, cmsr3 (itrac303) 🗸, cmsr4 (itrac304) 🗸, cmsr5 (itrac305) ✓, cmsr6 (itrac306) ✓, cmsr7 (itrac307) ✓, cmsr8 (itrac308) ✓ 10 Storages: itstor301, itstor302, itstor303, itstor304, itstor305, itstor306, itstor307, itstor308, itstor323, itstor324 Sessions (per node): cmsr1 (41), cmsr2 (86), cmsr3 (166), cmsr4 (49), cmsr5 (94), cmsr6 (69), cmsr7 (69), cmsr8 (42)

#### Cluster: compr - RAC for COMPASS (monitoring enabled) last update: 2008-02-13 11:33


CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

DR instances Broduction carries ASM CDR Rackun



### **3D Streams monitoring**





www.cern.ch/it

coturn:

if(busy]



#### Future improvements

Department

- Quad-core servers
  - smaller RACs, 1 quad-core better than 6 instance RAC
- Data guard
  - parallel RAC with small lag (few hours)
  - fast disaster recovery
  - can be open read-only to recover from human errors
- Streams replication
  - add redundancy for downstream and streams monitoring
  - automation of the split-merge (procedure used when one site needs to be dropped/re-synchronized)
- Oracle 11g new features
  - "SQL Replay" to have load on validation RAC
  - "Data Guard Standby snapshot" allows make a snapshot of production DB
  - "SQL Plan Management" to stabilize optimizer
  - "Result Cache" for faster results



CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it



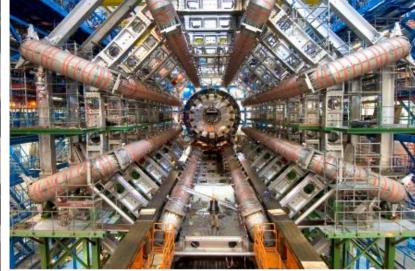
### Summary



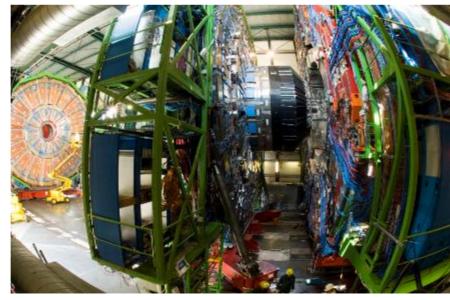
- High Energy Physics and Astronomy produce unprecedented amounts of data
  - databases are a key component of the data handling with an increasing scope in all areas of data handling & analysis
- Joint work between database vendors and science community (eg in CERN openlab) has been extremely beneficial for both sides
  - allowed to construct one of the worlds largest distributed database deployments world-wide for LHC
- Many of the technology and deployment issues are/will soon be relevant also for larger commercial data management systems
  - the open environment of science is an ideal place to push the limits of current technology further
  - also to the benefit of non-science applications



Oracle use within the LCG - 2


CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it




CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

#### Questions?









